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Engineering chaos for encryption and
broadband communication

By MARTIN HASLER

Department of Electrical Engineering, Swiss Federal Institute of Technology,
Lausanne, Switzerland

We present the different methods that have been proposed in the literature for send-
ing information by means of a chaotic signal. They are based on three different ways
to synchronize a receiver system with a chaotic transmitter system. Three different
methods to modulate the transmitter system with an information carrying signal are
also presented and some of their advantages and drawbacks are discussed.

1. Introduction

Chaotic behaviour has received much attention and created much enthusiasm in the
scientific community for more than two decades, but the engineering community
has been slow in accepting and studying this phenomenon. Furthermore, chaos has
been looked upon by ehgineers as a mere disturbing factor that must be eliminated
from any circuit or system that is intended to be of practical value. Only very re-
cently, some engineers have begun to realize that the rich dynamics of chaos could
be used in engineering. The most obvious application is the generation of pseudo-
random signals. A more sophisticated use of chaotic behaviour has been proposed
for communications, for control applications, for pattern recognition and for measur-
ing devices. Communications on chaotic carrier signals is the subject of this paper.
It is at present the most advanced application area for chaotic systems. An earlier
presentation of similar material can be found in Hasler (1994a).

The general set-up for such a communication system is represented in figure 1. An
information carrying signal s(t) is injected into the transmitter system who shows
chaotic behaviour. It generates an output signal of chaotic nature which is trans-
mitted. The receiver is driven by this signal and performs the inverse operation of
the transmitter, it retrieves the information signal. Thus the transmitter mixes in
some way the information with chaos so that it is not possible, or very difficult,
to extract the information from the transmitted signal. Another useful property of
the transmitted signal is its broadband nature, as in the case of spread spectrum
transmission.

It might be difficult to imagine how the receiver can extract from a chaotic sig-
nal the hidden information. Often, the receiver system is similar to the transmitter
system and its behaviour is chaotic when it is not driven. To be able to retrieve the
information, it is necessary to synchronize the two systems. We will discuss three
methods for the synchronization of chaotic systems in §2: (a) synchronization by
decomposition into subsystems; (b) synchronization by linear feedback; (¢) synchro-
nization of the inverse system.
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Figure 1. General set-up of the communication system.
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Figure 2. Master—slave set-up for synchronization.

In § 3 we shall present three methods to hide/retrieve information in/from a chaotic
carrier: (a) chaotic masking; (b) chaotic switching; (¢) direct chaotic modulation.

The discussion will reveal that the design of such transmission systems is very
delicate because of the conflicting design objectives robustness and security.

2. Synchronization of chaotic systems

The notion of synchronization is usually linked to periodic motion. Two periodic
signals are synchronized, if their periods are identical. This definition clearly is of
no use in the context of chaotic signals. In this case we require that the signals are
identical, at least asymptotically when ¢ — oc.

We shall consider a master-slave set-up as shown in figure 2. Mutual interaction
for synchronization has also been studied in the literature, but in the context of
communications it is less important.

Definition 1. The slave system synchronizes with the master system if
G(t) —y(t)] — 0 ast— o0 (1)
for any combination of initial states of the master and the slave system.

This definition can be extended to include approximate synchronization to accom-
modate inaccurate system parameters and non-ideal signal transmission. This topic
is beyond the scope of the paper.

It might come as a surprise that it is possible to synchronize two systems with
chaotic behaviour. Indeed, such systems have sensitive dependence on initial condi-
tions, i.e. any two solutions drift apart, even if their initial conditions are very close
to each other. It is the driving signal that forces the slave system to follow the time
evolution of the master system. We now present the three methods to achieve this.

(a) Synchronization by decomposition into subsystems

The idea of synchronization by decomposition into subsystems has first been pro-
posed in Pecora (1990). The following exposition of the method is inspired by Tesi
(1993).

Suppose a nonlinear dynamical system is described by state equations of the form,

dx; dz, dyy

H;:fl(w7yl)7"', —d't_:fn(m,yl)7 dr :gl('xl)y)'”7

dym

dt = gm(xl,y)v

(2)

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. Decomposition of the system.

Figure 4. Decomposition cancelling the y-interaction.
x(1) H () NG

Figure 5. Master—slave set-up for synchronization by decomposition into subsystems.

x1(r)

where © = (z1,... ,2,) and y = (y1,... ,Ym). The system can be decomposed into
two subsystems that interact only through the signals z; and y; (figure 3). To this de-
composition corresponds the simple separation of the equations (2) into two groups,

‘the first n equations that are the state equations for the variables x; and the following

m equations, the state equations for the variables y;.

If we now cut the iInteraction by the signal y;, we obtain the two subsystems
connected in cascade, as shown in figure 4.

This corresponds to a separation of the system of state equations (2) into two
parts. Indeed, the lower system is described by

dxl dxn o

_d‘t——fl(wyyl)"” ) —d;—fn(w,yl), 3)
and the upper system is described by

dyl o ~ dgm - N

3~ @y, —aE = gml(@,9), (4)

where § = (G1,Y2,- -+ » Ym)-
We now would like to synchronize the system of figure 4 with the system of figure 3.

For this purpose, we transmit the signal y;(t), as represented in figure 5. Here,
T = (.’21,. . ,i‘n) and :l; = (gl" .. ,’gm)

If both the systems in figure 5 started exactly at the same initial conditions x(0) =
#(0), y(0) = ¢(0), then clearly the time evolution of the state variables in both
systems would be identical, i.e. the two systems would be perfectly synchronized at
all times. However, in most practical situations, we have no control over the initial
conditions and therefore synchronization may or may not take place.

Let us now look at one of the numerous possible realizations of this synchroniza-
tion scheme. As a system with chaotic behaviour, we take Chua’s circuit (figure 6)
described by the state equations

d’Ul 1

Cl"d“t‘ = E(Uz —v1) = g(w), (5)

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 7. Characteristic of the nonlinear resistor in Chua’s circuit.

*]

Figure 8. Subcircuit driven by the master circuit.

dv 1 .
ngt—%:—ﬁ(vz—vl)+u, (6)
di
Ld_; = —Ug, (7)

with the nonlinear resistor characteristic of figure 7. We choose the parameters to
be R = 1730Q, L = 18 mH, C; = 10nF, Cy = 100nF, vy = 1V, my = —0.44,
my = —0.23, r = 150 k€.

The roles of the state variables  and y in figure 3 are played by @ = (vs, 1),
y = (v1). The lower subsystem is shown in figure 8. It is driven by the complete
circuit through transmission of the signal y; = v;. It is linear and its elements have
positive values. Thus it is globally asymptotically stable, which implies that its state
variables i1, and 0y converge to the state variables i1, and vo of the master circuit, as
t — o0.

The upper subsystem of figure 3 is shown in figure 9. Suppose first that it is
driven by the state variable x5 = vy of the master circuit. Its state variable 9, may
or may not converge to the state variable v; of the master circuit when t — oo,
depending on the circuit parameters (Dedieu 1993). For the parameter set given
above, numerical simulations indicate that synchronization takes place. For other

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 9. Subcircuit driven by the subcircuit of figure 8.

+
x(1) x(n >

y(0) e(t) y(0)

Figure 10. Master—slave set-up for synchronization by linear feedback.

parameter sets, where the circuit still exhibits chaotic behaviour, it is possible to
prove synchronization rigorously, using a Lyapunov function (De Angeli 1994).

(b) Synchronization by linear feedback

This is the typical automatic control approach. We consider two identical systems
as master and slave, compare their outputs and use the difference to control the slave
system (figure 10). This approach has been introduced in (Chen 1993a, b) under the
topic control of chaos.

If the output signal is a linear combination of the states and if the error signal con-
trols the state variables linearly, the state equations of the whole system of figure 10
become

dx

), ©
y(t) = c a(t), 9)
dx )

i f(@) + ke(t), (10)
g(t) = c (1), (11)
e(t) =y(t) — 4(t). (12)

Again, if both the master and the slave system started from exactly the same initial
conditions then at all times, x(t) = x(t), y(t) = §(t), e(t) = 0. With no constraint
on the initial conditions, however, the slave system may or may not synchronize with
the master system. In some instances, synchronization can be proved by Lyapunov
functions (Chen 1993a; Hasler 1994b).

(¢) Synchronization of the inverse system

In this method, the set-up of figure 1 is considered directly. The receiver is an
inverse system of the transmitter system in the sense that for suitable initial condi-
tions, the signal §(t) retrieved from the receiver is identical to the signal s(t) injected
into the transmitter. If we start from a different initial condition, we hope that

|5(t) — s(t)] = 0. (13)

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 11. Realization of the inverse system by circuits.

Figure 12. Synchronization of the RL-diode circuit by the inverse system.

If this is the case, we say that the inverse system synchronizes with the original
system.

At first sight, it might seem a formidable task to find an inverse for a nonlinear
dynamical system. In the context of circuits, however, there are evident candidates for
inverse systems. Consider a nonlinear dynamical 1-port excited by an independent
current source with current i(¢). If we take the voltage across the current source
and inject it into another copy of the same 1-port by a voltage controlled voltage
source, we usually will find exactly the same current i(¢) flowing through the voltage
source, provided the initial currents in the inductors and the initial voltages across
the capacitors in the two 1-ports are the same (figure 11). Dually, the signal s(t) can
be applied to the 1-port by means of a voltage source. In this case the current across
the voltage source is transmitted and the voltage across the controlled current source
in the slave circuit is retrieved.

Non-autonomous chaotic circuits can be directly used for the master system in
figure 11. In (Boehme 1994) the dual system of figure 11 is implemented with the
RL-diode circuit (figure 12). In this case, synchronization can be proved, because in
the inverse system the current is imposed on the diode. Assuming that the nonlinear
resistor and capacitor characteristics in the equivalent circuit of the diode are strictly
increasing, it is not difficult to prove that (q;(t) — go(t))? is strictly decreasing as a
function of time, where ¢;(t) and g»(t) are the capacitor charges of two arbitrary
circuit solutions, and that this implies unique asymptotic behaviour for the inverse
system.

In the case of autonomous circuits, an independent voltage or current source is
added in such a way that the chaotic behaviour is not destroyed. Synchronization
of the inverse system has been achieved with Chua’s circuit and with Saito’s circuit
(Halle 1993; Hasler 1993). In Halle, it was possible to prove synchronization rigor-
ously, because the nonlinear resistor and the linear part of the slave circuit have their
voltage imposed by the controlled source (figure 13). Therefore, 2, (t) = i1(t) at all
times and

since iy is the port current of a linear passive 1-port. In other words, the inverse
system is globally asymptotically stable. This implies that 2(¢) synchronizes with i(t).

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 14. Transmission using chaotic masking.

In the set-up of Hasler (1993), neither the voltage nor the current of the nonlinear
element is imposed, and therefore the proof of synchronization appears to be difficult.
Nevertheless, we have confirmed synchronization by computer simulation.

3. Transmission of information by a chaotic signal

(a) Chaotic masking

In this method (Oppenheim 1992; Kocarev 1993) an analogue information carrying
signal s(t) is added to the output y(t) of the chaotic system in the transmitter. On
the receiver side an identical chaotic system tries to synchronize with y(¢). From this
point of view, the information signal s(¢) is a perturbation and synchronization will
take place only approximately. However, if the synchronization error is small with
respect to s(t), the latter can be approximately retrieved by subtraction (figure 14).
This is the case if the signal s(t) is small with respect to y(¢) and/or if the spectra of
the two signals do not overlap too much. Both of these requirements can apparently
be relaxed (Lozi 1993; Cuomo 1993). However, if the purpose of using a chaotic signal
for transmission is to hide the information, s(t) should not be large. Therefore, it
can be expected that the method is sensitive to channel noise. Indeed, additive noise
cannot be distinguished from s(t) by the set-up of figure 14 and it has to be eliminated
at a later stage. This is a difficult if not impossible task if the amplitude of s(t) is
not large with respect to the noise level.

(b) Chaotic switching

In this method the information signal s(t) is supposed to be binary. It controls
a switch whose action changes the parameter values of the chaotic system. Thus,

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 15. Transmission using chaotic switching.

according to the value of s(t) at any given instant ¢, the chaotic system has either
the parameter vector p or the parameter vector p’. The output y(t) of the chaotic
system is transmitted to two copies of the chaotic system, one with the parameter
vector p and the other with the parameter vector p’ (figure 15).

If the momentary position of the switch in the transmitter is on position p, then
the system with parameter vector p in the receiver will synchronize, whereas the
system with parameter vector p’ will desynchronize. Thus the error signal e(t) will
converge to zero, whereas €/(t) will have an irregular wave form with a distinetly non-
zero amplitude. If the switch in the transmitter is on position p’, then we have the
opposite situation, €'(t) will converge to zero and e(t) will be of non-zero amplitude.
Consequently, the signal s(t) can be retrieved from the error signals e(t) and e'(t).
Clearly, one has to leave the switch in the transmitter a certain time in the same
position to be able to observe the convergence of the corresponding error signal to
Zero.

In some realizations only one chaotic system is used on the receiver side. To dis-
tinguish the transmitted bit value, one has to decide between synchronization and
desynchronization on the basis of a single error signal.

Chaotic switching has been realized with Chua’s circuit, switching a linear resistor
in parallel with the nonlinear resistor and performing the synchronization with de-
composition into subcircuits (Dedieu 1993). In figure 16, the transmitted signal, the
voltage vy (cf. figure 6), is plotted against the retrieved voltage 0y of both systems in
the receiver. Clearly, one of them synchronizes since the value of vy and 0, is nearly
identical at all times and thus the v; — 97 plot remains close to the diagonal. This
is not at all the case for the other system in the receiver, which renders its desyn-
chronization visible. These curves have been gathered from an experimental set-up.
In figure 17, the simulated time evolution of the transmitted signal, the voltage of
capacitor is represented when the resistor is periodically switched on and off, as in-
dicated by the dashed line. The irregular nature of the capacitor voltage does not
allow to retrieve this binary information in any evident way.

In Hasler (1994b), the same parameter is switched, but synchronization is per-
formed by linear error feedback, whereas in Parlitz (1993), the capacitors and the
inductor are switched between two values and synchronization is achieved by decom-
position into subcircuits. The method of chaotic switching has also been described
in Bel’skii (1993), with a different chaotic system, synchronization by decomposition
into subsystems and a single chaotic circuit on the receiver side.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

/%

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Encryption and broadband communication 123

(a) (b)

)4 %

N

N

N

Figure 16. Transmitted against retrieved voltage vy for the receiver subsystem with the right
parameters (left) and with the wrong parameters (right) (from Dedieu 1993).
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Figure 17. Transmitted signal and hidden binary signal (from Dedieu 1993).

While chaotic switching is expected to be more robust against noise than chaotic
masking, its information transmission rate is lower, because on the one hand, the
binary signal has a lower information content per unit of time than the analogue
signal and on the other hand, for each bit that is transmitted, one has to wait until
synchronization and desynchronization is achieved in the receiver.

(¢) Direct chaotic modulation

This method uses the general set-up of figure 1 in a straightforward way. The signal
s(t) is the information carrying signal and y(t) is the transmitted signal. Thus, no
additional circuitry has to be used, the chaotic system is the transmitter and the
inverse system is the receiver. If we look at a circuit realization, e.g. in figure 12 we
can see that s(¢) drives the chaotic circuit and thus modulates the chaotic signal in
some way.

The information can be injected directly in analogue form, as proposed in Halle
(1993), or s(t) can be itself an analogue signal modulated by binary information, as
proposed in Hasler (1993), with the obvious advantages and drawbacks. The trans-

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 18. Original and retrieved information signal, for direct modulation with Saito’s circuit
(from Hasler 1993).

mission of a digital signal modulated on to s(t) can be expected to reach higher bi-
trates than with chaotic switching. In chaotic switching, whenever the signal changes
its value, one has to wait for synchronization since the initial conditions in the trans-
mitter and the receiver subsystem that has to synchronize are different. In direct
chaotic modulation, the receiver continuously tracks the transmitter and thus the
states of the two chaotic systems are never very different. This can be seen in fig-
ure 18, where a phase modulated signal is transmitted on a chaotic carrier, using
Saito’s circuit. At the beginning, the receiver needs some time to synchronize, but
afterwards the receiver tracks the 180° phase shifts perfectly. In figure 19, the trans-
mitted signal is represented for the same experiment. Both figures have been obtained
by computer simulation.

4. Conclusions

Various methods have been presented which permit to tranmit information through
a chaotic signal. For this purpose it is necessary to have a transmitter with chaotic be-
haviour who produces such a signal and a receiver with unique asymptotic behaviour
who is able to synchronize with the transmitter. Furthermore, the information carry-
ing signal has to modulate the chaotic carrier signal in some way. Three methods for
synchronization and three methods for modulation have been presented. If we look
at them from the point of view of cryptography, the secret key is the value of the
circuit parameters. Therefore, the systems should be designed in such a way, that
synchronization does not occur anymore if the parameters are not correct. On the
other hand, synchronization should still take place, approximately, if the parameters
are slightly inaccurate, so that a real system can work. This leads to a delicate design
problem, a difficult compromise between security and robustness.

Further developments are needed if the systems proposed in this paper are to
compete with conventional cryptographic or spread spectrum systems. In particular,
it should be investigated to which extent the circuit parameters of the transmitter

Phil. Trans. R. Soc. Lond. A (1995)
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T

time/ms

Figure 19. Transmitted signal, for the case of direct modulation by Saito’s circuit.

can be identified, what influence the channel noise and the channel parameters have,
and how a source separation can be performed when more than one transmitter is
sending on the same medium, as in CDMA systems.

Notwithstanding these problems, it is fascinating to see how the rich dynamics of
chaotic systems may find their way into engineering applications.

The author is indebted to H. Dedieu for many stimulating discussions and to the Swiss National
Science Foundation for financial support (grant no. 2000-040705.94/1).
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